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known case. This gives further confidence to the use of  the sdf-consistency of 
localization as a way of solving the localization problem in the relativistic case, 
in spite of  the strange consequenr that we then obtain. 
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1. The theories of elastic dielectrics proposed by Toupin (1963) and Grot and 
Eringen (1966) have been generalized by Salt (1969). The main assumptions and 
results of the latter work are summarized below. 

2. A motion of a body can be represented by a set of three sufficiently smooth 
functions X K = Xt(x~), which map a region of the space-time manifold, called 
the world tube of the modon, ~ onto the body manifold B (Toupin, 1958). The 
ad, i -, 1, 2, 3, 4, are coordinates o f  the space-time point x, w h ~  the X ' ,  K = 1,~3, 
are coordinates of the material point X in B. Space-time is a foux-dimensional 
differentiable manifold, endowed ~ith a fundamental tensorg,~ that has signature 
(+,+,+,-) .  The functions X[(x ~) representing a motion satisfy the conditions 
that the matrix I[~ XX[[ be of rank 3, and that the three world vectors ~ X ~ be 
space-like. 

The world velocity vector w a is defined at each x in the world tube ofthe motion 
by the conditions 

w~w~+1-0  

3. At each point of the wodd tube of a motion an axial scalar nmss density 
p may be defined such that mass is conserved: 

e ~ w ~ - 0  

For any three.dimenslonal element of  extension dJv~ in space-ti t~ p w t d ~  
is the mass of the element d 3 Xof  B which is the image of dJr, under the mapping 
X f -- X ' f x ~ .  
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4. The change-current density j~ at each point in the world tube of a motion 
is determined by the magnetization-polarization tensor p a  of the body at that 
point (Truesdell & Toupin, 1960): 

j '  - e . p  a 

Given the world velcsdty vector of  the motion, p a  can be expressed in terms 
of the world polarization and magnetization vectors p t  and 34". (Moiler, 1952). 
The necessary and sufficient condition that a material be non-magnetic is that 
M~ be identically zero. 

$. The electromagnetic field can be represented by an anti-symmetric tensor 
field Ftt which is the curl of a vector potential A .  F~ = 2~tl.4t]. 

6. The field equations for the system consisting of an elastic dielectric inter- 
acting with a gravitational field and an electromagnetic field may he obtained 
from an action principle. The Lagrangian density L consists of the sum of four 
terms, representing (i) the gravitational field, (ii) the material, (iii) the electro- 
magnetic field, and (iv) the interaction of the electromagnetic field with ti~e 
material These arc 

_ (_~,),n R/7.~ (i) 

- e ( z  + ~ ( - g , .  w'N~)'~ f.') 

-~( -g) ' r"  ~ '  g "  F . .  F,. Cfu') 

�89  w ' w  " ) (iv) 

In (i) R is the scalar curvature of the space-time manifold and x the gravitational 
constant. In (ii) ~ is an absolute scalar function ofga,  ~ X g, Pf and M~; it might 
be interprcted as the internal energy per unit mass of the material. 

The independent variables in the action principle are ga, X x, p, w t, A~ and 
p a .  The f o l l o ~ g  constraints have, however, to be taken into account by the 
use of  undetermined Lagrange multipliers: 

w,w*+ 1 - 0  

w' a, X 1 - 0  

a,(ew') - o 

7. I f  the Lagrange multipliers are eliminated from the field equations that 
result from the above action principle, the following set of field equations is 
obtaincd: 

(--t) ' n  r + x T "  - 0 

~ O j X  '~ - 0  

a~w' )  - 0 
as 

e. .  - 2 p ~  - o 

o~pa _ a,t(_s),r~ F"]  - 0 
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6 q* is tbe Einstein tensor and T ~a the stress-energy-momentum tensor density, 
siv~ 

T~' - 2 ~L' st,, 
wbe1"c L" is tl~ sum of the last three terms in the Lagrangian density L, and 
5/3ga dcnotm the Lagrange derivative. 

8. In tl~ non-relativistic approximation, the above field equations and the 
definition of T"  reduce to the set of field equations and constitutive relations 
~maployed by Toupin (1963). Also, if the Lorentz invariant theory of Grot & 
Eringen (1966) is restricted to the case of zero heat conduction, their results may 
be shown to follow from the field equations in (7), provided the restriction to 
flat space-time is made and certain changes of the independent variables employed. 
Hence there is no inconsistency between the theories of Toupin and of Grot and 
Eringen. 
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